I am a third-year PhD candidate studying Theoretical Computer Science at MIT, grateful to be advised by both Virginia Vassilevska Williams and Ryan Williams.
I am broadly interested in fine-grained complexity and algorithm design, and especially enjoy thinking about problems concerning graph algorithms, string algorithms, and applications of algebraic methods in computer science.
Previously, I received a B.S. in Computer Science & Mathematics from Harvey Mudd College, where I was fortunate to have several excellent mentors. In particular, I am indebted to Mohamed Omar for helping foster my interest in combinatorics, Jim Boerkoel for showing me how fascinating computer science research could be, and Ran Libeskind-Hadas for sparking my interest in complexity theory.
You can contact me using the email listed here .
arXiv Conference Extended Abstract A Twitter Thread Oxford-Warwick Presentation Slides LIS Natural Computation Presentation UWaterloo Solvers, ML, Logic, & Complexity Presentation FOCS Video
If you enjoyed this paper, you may also enjoy this beautiful sequel work by Till Tantau.
arXiv Conference Proceedings SM Thesis Version Presentation
Artificial Intelligence 2020 (Volume 289)
ICAPS 2019 · Runner-Up for Best Student Paper
Conference Proceedings Presentation
During high school I participated in a few math contests, and in undergrad I wrote several problems for the Caltech Harvey Mudd Math Competition and USA Math Talent Search. Every two weeks I will post a recreational (non-research) math problem which I encountered during this time (and particularly enjoyed) below.
Fibonacci Binomials
The Fibonacci sequence $(F_n)$ is defined by setting $F_0 = F_1 = 1$, and then taking $$F_{n} = F_{n-1} + F_{n-2}$$ for all integers $n\ge 2$. We further define the sequence of Fibonacci factorials $(f_n)$ by taking $$f_n = \prod_{m=0}^n F_m$$ for each integer $n\ge 0$. Prove that for all nonnegative integers $a$ and $b$, the quantity $$\frac{f_{a+b}}{f_af_b}$$ is an integer.
A new problem will be posted here on August 12th, 2022.
Previously posted problems can be found here.